
Part 2: Engineering GSAM Version 3.0

Chapter 10

Developing
Software Maturity

Chapter 10: Developing Software Maturity GSAM Version 3.0

10-2

Contents

10.1 Process Maturity: an Essential for Success .. 10-3
10.2 Benefits of Moving Up the Maturity Scale .. 10-5
10.3 How to Measure ROI ... 10-9

10.3.1 Maturity Models... 10-11
10.3.2 Capability Maturity Model (CMM) .. 10-14
10.3.3 People — Capability Maturity Model (P-CMM) 10-16

10.3.3.1 P-CMM Structure ... 10-17
10.3.4 Software Acquisition — Capability Maturity Model (SA-CMM).... 10-18
10.3.5 Systems Engineering — Capability Maturity Model (SE-CMM) 10-20
10.3.6 ISO/IEC Maturity Standard: SPICE... 10-22

10.3.6.1 SPICE Product Suite .. 10-22
10.3.6.2 Baseline Practices Guide .. 10-23
10.3.6.3 BPG Capability Levels ... 10-23

10.3.7 Common Features and Generic Practices .. 10-24
10.4 Lessons Learned in Implementing the Software Development
 CMM ... 10-26
10.5 Software Development Capability Assessment Methods 10-26

10.5.1 Software Development Capability Evaluation (SDCE) 10-28
10.5.2 Software Engineering Institute (SEI) Software Capability
 Evaluation (SCE) ... 10-28
10.5.3 Addressing Maturity in the Request for Proposal (RFP).................. 10-29

10.6 References .. 10-31

10-3

Chapter 10: Developing Software Maturity GSAM Version 3.0

10.1 Process Maturity: an Essential for Success

“The development of a weapon system requires integrating technical, administrative, and
management disciplines into a cohesive, well-planned, and rigorously controlled process. As a
critical component of a weapon system, software must be developed under a similarly disciplined
engineering process.” [DSMC90]

The above statement identifies the need for capability and maturity in software acquisition and
development — we must have a disciplined, engineering approach to software acquisition and
development, while maintaining a grasp on the process and product. If we cannot achieve either
of these, we have introduced unnecessary risk in meeting end customer needs within cost and
schedule constraints.

What constitutes capability and maturity? Capability is the ability to do something. Maturity is
the state of being fully developed. Thus, one may conclude that to have “capability maturity,” an
organization would be capable of acting in a fully developed manner.

Mark C. Paulk describes the differences between immature and mature organizations in this
manner:

“The immature … organization is reactionary, and managers are usually focused on solving
immediate crises (better known as fire fighting). Schedules and budgets are routinely exceeded
because they are not based on realistic estimates. When hard deadlines are imposed, product
functionality and quality are often compromised to meet the schedule.

In an immature organization, there is no objective basis for judging product quality or for solving
product or process problems. Therefore, product quality is difficult to predict. Activities intended
to enhance quality such as reviews and testing are often curtailed or eliminated when projects fall
behind schedule.”

On the other hand, a mature … organization possesses an organization-wide ability for managing
… processes. The … process is accurately communicated to both existing staff and new employees,
and work activities are carried out according to the planned process. The processes mandated are
fit for use and consistent with the way the work actually gets done. These defined processes are
updated when necessary, and improvements are developed through controlled pilot-tests and/or
cost benefit analysis. Roles and responsibilities within the defined process are clear throughout
the project and across the organization.

In a mature organization, managers monitor the quality of the … products and customer satisfaction.
There is and objective, quantitative basis for judging product quality and analyzing problems with
the product and process. Schedules and budgets are based on historical performance and are
realistic; the expected results for cost, schedule, functionality, and quality of the product are
usually achieved. In general, a disciplined process is consistently followed because all of the
participants understand the value of doing so, and the necessary infrastructure exists to support
the process.” — Mark C. Paulk [PAULK93]

10-4

Chapter 10: Developing Software Maturity GSAM Version 3.0

Notice the use of the term “process” throughout the description above. Having and using a
defined process, while continuously improving that process, is directly related to capability
maturity. The following are quotations from two of many authors who have commented on the
importance of processes:

“Not having a system [process] is like doing every job for the first time, every time – including the
accompanying errors and false starts. Without the regularity and repetition of work that characterize
a system [process], it becomes much more difficult to learn because we are deprived of time-
ordered process data. Without a system [process], workers, teams, and departments would act
independently of one another, without synchronization or division of labor.

If we have no system [process] we have no opportunities for progress and productivity
improvements.” — Kenneth T. Delavigne and J. Danie Robertson [DELAVIGNE94]

“Since I first coined the term [“reengineering”] in the late 1980s, I have consistently used the
same definition for it: Reengineering is the radical redesign of business processes for dramatic
improvement. Originally, I felt that the most important word in the definition was ‘radical.” The
clean sheet of paper, the breaking of assumptions, the throw-it-all-out-and-start-again flavor of
reengineering – this is what I felt distinguished it from other business improvement programs.

I have now come to realize that I was wrong, that the radical character of reengineering, however
important and exciting, is not its most significant aspect. The key word in the definition of
reengineering is “process”: a complete end-to-end set of activities that together create value for
a customer.”

[American managers] were getting nowhere because they were applying task solutions to process
problems.

The difference between a task and process is the difference between part and whole. A task is a
unit of work, a business activity normally performed by one person. A process, in contrast, is a
related group of tasks that together create a result of value to a customer.

The problems that afflict modern organizations are not task problems. They are process problems.”
— Michael Hammer [HAMMER96]

Webster defines process as, “A series of operations performed in the making or treatment of a
product, e.g., a manufacturing process.” A software process is the series of operations performed
in acquiring, developing, or maintaining of a software product. A software process definition is
the description of that process. The process definition guides teams of software acquisition
personnel or development engineers in the performance of their work. Thus, a defined, disciplined
process is one that is documented, taught, applied, measured, used by everyone in the organization,
and accessible to all team members (e.g., an organization’s procedures manual). A defined
process does the following:

10-5

Chapter 10: Developing Software Maturity GSAM Version 3.0

• It provides the basis for examining and improving the process;
• It aids in establishing predictability;
• It improves understanding of roles and dependencies;
• It guides software personnel through orderly decisions,
• It provides a smooth working framework; and
• It helps staff members to readily transition from one program to another. [CLOUGH92]

Without a defined, disciplined software process, each team member’s work rests on intuition,
and the quality of the product on blind faith. Team members are left to arrive at their own
operational processes, methods, procedures, and standards without the direction and support
professionals in other disciplines consider essential (e.g., in sports, the arts, or science).

Watts Humphrey explains that a software process is the technical and management framework
for applying engineering methods, tools, procedures, and people to software development, while
the process definition identifies roles and specifies tasks. The definition also establishes measures
and provides entry and exit criteria for every major step in the process. [HUMPHREY95]

Software acquisition and development organizations are more successful when they have processes
they can effectively communicate, manage, and evolve. A well-defined process is also easier to
improve. For instance, if some steps in the process are skipped, or if the process is inefficient,
problems may occur. Steps, or the process itself, may not be used if the definition is poor,
communication is unclear, or team members are not motivated. Improvements can be made
once these problems are identified. The process, its definition, and the supporting infrastructure
all evolve and mature with use and experience. [HUMPHREY95]

10.2 Benefits of Moving Up the Maturity Scale

Published studies of software engineering improvements measured by the Software Engineering
Institute’s Capability Maturity Model (CMM) indicate significant cost savings and return on
investment (ROI). Thus, software testing and maintenance costs are decreased, because quality
requirements are more readily met. Of the companies studied, a distinction is made between the
one time CMM —compliance costs of achieving a higher maturity level and the cost of continuing
to perform software engineering at that higher level. The latter has been found to actually represent
a cost reduction when compared to software production costs at the former lower level. Some
studies show that the onetime cost of achieving a higher level are quickly recouped by significant
savings in producing higher-quality software that requires less rework and is easier to maintain.

All companies studied report that process improvement works best when employees and employer
agree to accept the required extra effort and expense. One such arrangement is to have some
meetings and training sessions conducted during the lunch hour, with the company providing
lunch. Other variations on employer/employee compromises include shared time, when training
is conducted on 50% company time and 50% employee time.

It is generally easy to quantify the benefits of increased maturity at the company level. Production
costs go down — quality goes up — time to market is shortened. How employees benefit is
subtler. The higher level in which an employee works, the more valuable he is to the software
industry — i.e., the techniques learned are very marketable, useful professional skills. In addition,

10-6

Chapter 10: Developing Software Maturity GSAM Version 3.0

employee pride and management respect cannot be overlooked as an employee benefit, reward,
and motivating force. Those companies having achieved higher maturity levels agree that a good
reputation with their customers is primarily based on product quality and agreeable customer
interrelations. Higher maturity levels lead to higher quality software, and therefore, increased
company reputation. It also tends to change the manner in which companies interact with their
customers. For example, the formality of a higher maturity level lessens ad hoc contractor
tendencies to give into volatile government requirements; it also contributes to more reliable,
mutually-beneficial contractor-government relationships. Above all, the most compelling benefit
is also the most basic one: higher quality software, at lower cost, with improved company
reputation, is a powerful formula for competing, winning, and keeping contracts. [SAIEDIAN95]

In the August 1994 report, Benefits of CMM-Based Software Process Improvement: Initial Results
(CMU/SEI-94-TR-13), the SEI collected and analyzed data from 13 organizations (both industry
and Government) to obtain process improvement results of efforts associated with the CMM.
Table 10-1 summarizes these results. A 35% median productivity gain, a 19% schedule reduction,
a 39% post-release defect reduction, and a 5:1 return on investment ratio bear convincing
testimony of the value of process improvement. The SEI stated that if these CMM process
improvements had been combined with more robust software engineering environments, the use
of automated process control tools, or the implementation of methodology improvements, the
results would have been even more dramatic.

Table 10-1. Summary of SEI CMM Software Process Improvement (SPI) Study

In this report, quality was defined as the state of software when released or delivered to customers.
The most common measure of quality among the data submitted was the number of post-release
field defect reports. Figure 10-1 illustrates yearly reductions in that number. The letter values on
the Y-axis are arbitrary designations for organization anonymity. The number values in parentheses
on the Y-axis indicate the number of years the organization invested in software process
improvement (SPI) programs. Organization P sustained a remarkable defect report reduction
rate of 39% per year over a 9-year period. That rate represents successive releases with substantial
amounts of new and modified code — all of which completed its entire life cycle throughout that
period. Organization P’s last release had no defects reported in new and modified code.
Organizations S and T also experienced substantial reductions for a significant period.

CATEGORY RANGE MEDIAN

Total yearly cost of SPI activities $49,000 to $1,202,000 $245,000

Years engaged in SPI 1 to 9 3.5

Cost of SPI per software engineer $490 to $2,004 $1,375

Productivity gain per year 9% to 67% 35%

Early detection gain per year (pre-
test defects discovered)

6% to 25% 22%

Yearly reduction in time to market 15% to 23% 19%

Yearly reduction in post-release
defect reports

10% to 94% 39%

Business value of investment in SPI
(value returned on each dollar
invested)

4.0:1 to 8.8:1 5.0

10-7

Chapter 10: Developing Software Maturity GSAM Version 3.0

Figure 10-1. Reduction per Year in Post-release Defect Reports [SEI94]

Productivity data were gathered on lines-of-code (LOC) produced per unit of time. As illustrated
in Figure 10-2, the largest gain, organization G, was based on a comparison of two programs,
only one of which adopted the SPI. The superior productivity of the second program was due to
clear requirements definition and management. Organization H had a large productivity gain
due to a reuse program supported by tools and an environment adapted to promote reuse.

39%

94%

70%

10% 11%

0%

20%

40%

60%

80%

100%

P
(9)

Q
(1.5)

R
(1)

S
(3.5)

T
(3.5)

Quality Results
Reduction in field

error reports per year

Organization
(Years of SPI)

45% (Average)

Figure 10-2. Gain per Year in Productivity [SEI94]

9%

67%

58%

12%

0%

10%

20%

30%

40%

50%

60%

70%

F
(3)
1.3

G
(1)

1.67

H
(4)
6.3

I
(5)
1.8

Productiv ity R esu lts
Gain per year in
LOC/unit of tim e

Organization
(Years of SPI)

37% (Average)

10-8

Chapter 10: Developing Software Maturity GSAM Version 3.0

ROI data were reported in terms of the ratio of measured benefits to measured costs, as illustrated
in Figure 10-3. Benefits included savings from productivity gains and fewer defects. The benefits
did not, however, include the value of enhanced competitive position from increased quality and
shorter time to market. The cost of SPI included the cost of the Software Engineering Process
Group (SEPG), assessments, and training, but did not include indirect costs such as incidental
staff time to put new procedures in place.

Figure 10-3. Return on Investment Ratio of SPI Efforts [SEI94]

In 1997, Karl Williams reported the following experience at Motorola based on 176 groups in 11
different countries:

• Overtime down 20X
• Released defects down 20X
• Cycle time improved 2X
• Productivity up 3.4X
• Development cost down 3X
• Schedule and cost overruns down more than 100X
• Return on investment ranging from 4X to 16X with an average of 8X. [WILLIAMS97]

John Vu of Boeing Space Transportation Systems reported the following:

• Later phase defects reduced from 31% to 4%
• Improved productivity by 62%
• Improved cycle time by 36%
• Improved customer satisfaction by more than 10%. [VU97]

Some individuals are probably thinking, “Why spend all the effort on process improvement
when I can buy a few application development tools, save a lot of bucks, and be done with it.”

4.0
5.0

4.2

6.4

8.8

0
1
2
3
4
5
6
7
8
9

U
(3.5)

V
(6)

W
(6)

X
(5)

Y
(3.5)

Return o n In v e stm en t Results
ROI

Organizat ion
(Years of SPI)

5 .7 (Average)

10-9

Chapter 10: Developing Software Maturity GSAM Version 3.0

Researchers at IBM spent four years studying the impact of application development tools. They
concluded that for teams with well-structured processes, the use of such tools enhanced the
process and improved performance. However, for teams with more informal or ad hoc processes,
tool use abetted chaos. [GUINAN97] Or to quote an often heard phrase, “A fool with a tool is
still a fool.”

NOTE: Refer to past issues of CrossTalk (published by the Software Technology Support
Center (STSC)) for timely, pertinent articles on the subject of process improvement and
moving up the maturity scale.

Other sources with information regarding the benefits of software process improvement are:

• University of Texas
• European Software Institute
• Standish Group Report
• Software Engineering Institute

10.3 How to Measure ROI

Most managers will want to know what financial benefit their organization or company is reaping
from their investment in process improvement. In order to obtain that information the organization
must have baseline data from which to measure change. As a minimum, the cost per unit of
production, such as the cost per line of code, is needed. A very mature organization using
quantitative methods for process management will probably have all the data needed down to the
development process phase. Most, however, will be fortunate to know their bottom line costs
and quantity of software produced.

Since most organizations haven’t matured to the point where quantitative methods are being
used to manage their processes, an example of a relatively simple method of computing return on
investment is included here. In adopting a simplified approach, several assumptions must be
made to proceed. These assumptions are:

1. Any change to processes will require time to be implemented and mature to the point of
effectiveness.

2. Changes made at different times, say a year apart, may each be improving productivity over
the same period of time. This will make attribution of any improvement to a given change or
investment very difficult.

3. Simple, end to end measures, which are easy to implement and which are needed for CMM
level 2 estimating & feedback, are the best for bottom-line evaluations of ROI.

4. Since no evidence exists to the contrary, the organizational capability will be assumed to be
steady state and any changes to productivity will be attributed to the investment in process
improvement.

5. The benefit to the organization due to improvements in productivity can take the form of cost
avoidance (reduced developmental staff) or increased capability (more software requirements
met for the same cost).

www.stsc.hill.af.mil
www.utexas.edu.coe/sqi/archive/krasner/spi.pdf
www.esi/es/information/collections/benefitsSPI/welcome.html
www.standishgroup.com/chaos
www.sei.cmu.edu/

10-10

Chapter 10: Developing Software Maturity GSAM Version 3.0

6. All cost benefits can be calculated from the baseline cost per unit of production, the cost per
unit of production at measurement points and the volume of units produced or expected to be
produced at each measurement point.

7. Most organizations deal with more than one product line (eg. Operational Flight Programs
and Automatic Test Equipment (ATE) Test Program Set development as well as bug fixes in
ATE programs.) The savings realized for each product line must be calculated separately.
The total savings will be the summation of the savings for each product line.

8. It is a common business practice to use a five year period to calculate the payback for investment
in new equipment or processes. We will use the same period in evaluating the return on
investment in process improvement.

Using the these assumptions, the savings obtained by productivity improvements in the
development of a given product line for a given period would be equal to the fractional reduction
in cost per unit times the volume produced for that product line in dollars adjusted for inflation.
The total savings will include actual savings shown for past performance increases and projected
savings five years into the future. However, the projected savings should be based on the per unit
cost reduction to the present, multiplied by the volume of projected production for the next five
years

In this example, the calculated ROI will be based on a sliding window of time no more than 11
years in length. The calculations are based on a period measured back no more than five years
from the present and projected for 5 years into the future. For those organizations that do not
have a five-year history of data from which to work, the baseline year should be the first year
from which data is available. For some, that may be the current year.

In order to be consistent, all calculations of cost and savings should be based on direct labor
costs, burdened only by organizational overhead. All calculations should also be done in constant
year dollars calculated against the current baseline year.

The method of calculating ROI using the above logic is as follows:

ROI = Total Savings ÷ Total Investment

Total Savings: ∑= SS PLTotal
 (The sum of all product line savings) where:

Product line savings: SSS ojectedTDPL Pr
+= (The sum of savings to date and projected savings)

Savings to date:)*)1((
1

EC
CS X

P

Bx X

B
TD ∑

+=

−= (The sum of savings for the product line from the

first year after process improvement investments began to the present)

P = Present year

B = Baseline year

10-11

Chapter 10: Developing Software Maturity GSAM Version 3.0

C
B
 = Baseline Cost per Unit of Production. i.e. The cost per unit at the beginning of process

improvement

C
X
 =

 Cost per Unit of Production during year X.

E
X

 = Direct and organizational overhead expense of production for year X.

Projected Savings: ∑
+

+=

−=

5Pr

1Pr
Pr

*1
esent

esentX
X

P

B
ojected EC

CS

C
P
 = Present Cost per unit of Production

E
X
 = Projected direct and organizational overhead expense of production for each year.

Total Investment includes the sum of all costs for manpower, training and tools expended for the
process improvement effort from the beginning of the calculation window to date.

10.3.1 Maturity Models

Many organizations have embarked on organizational improvement efforts that focus on software
process improvement. The Capability Maturity Models (CMM) provides a means for assessing
current practice and guiding process improvement efforts. [The CMM is a registered Service
Mark of Carnegie Mellon University.] The International Standards Organization/International
Electrotechnical Commission (ISO/IEC) has developed a version of the CMM framework, the
Software Process Improvement Capability dEtermination (SPICE) model. The models discussed
here include:

• Capability Maturity Model (CMM) for Software (CMU/SEI-TR-93-24 and CMU/SEI-TR-
93-25),

• People — Capability Maturity Model (P-CMM) (CMU/SEI 95-MM-001 and CMU/SEI-95-
MM-002),

• Software Acquisition — Capability Maturity Model (SA-CMM) (CMU/SEI-96-TR-20),
• Systems Engineering — Capability Maturity Model (SE-CMM) (CMU/SEI-95-MM-003),
• Software Process Improvement Capability dEtermination (SPICE) (The ISO/IEC 15504).

Other maturity models have been developed for other domains. The proliferation of models has
led to the effort to integrate several domain models into a single model. The Federal Aviation
Administration integrated CMM (iCMM) model combines the CMMs for Software, Software
Acquisition, and Systems Engineering into a single model (available at www.faa.gov/ait/ait5/
FAA-iCMM.htm). There is an ongoing effort by the Office of the Secretary of Defense, industry,
and the Software Engineering Institute to create a model that combines the CMMs for Software,
Systems Engineering and Integrated Product Development into a single model. This is known as
the CMMi project. The models are based on one of two architectures, either a staged architecture
or continuous architecture. For example the CMM for Software, People — Capability Maturity
Model (P-CMM) , and Software Acquisition — Capability Maturity Model (SA-CMM) all use a

www.sei.cmu.edu/publications/documents/93.reports/93tr.024.html
www.sei.cmu.edu/publications/documents/93.reports/93tr.025.html
www.sei.cmu.edu/publications/documents/93.reports/93tr.025.html
www.sei.cmu.edu/publications/documents/95.reports/95.mm.001.html
www.sei.cmu.edu/publications/documents/95.reports/95.mm.002.html
www.sei.cmu.edu/publications/documents/95.reports/95.mm.002.html
www.sei.cmu.edu/publications/documents/96.reports/96.tr.020.html
www.sei.cmu.edu/publications/documents/95.reports/95.mm.003.html
www.iese.fhg.de/spice/resources/spice_resources/iso_doc_frames.html

10-12

Chapter 10: Developing Software Maturity GSAM Version 3.0

staged architecture while the Software Engineering — Capability Maturity Model (SE-CMM)

and SPICE use continuous architectures. To date, a model combining the CMMs for software
and system engineering has been developed in both a staged and continuous representation.

Figure 10-4 describes the architecture for the staged models. The maturity levels or stages are
composed of several key process areas. Each key process area is organized into five sections
called common features. The common features specify the key practices that, when collectively
addressed, accomplish the goals of the key process area. The five common features are:

• Commitment to perform,
• Ability to perform,
• Activities performed,
• Measurement and Analysis, and
• Verifying implementation.

The practices in the common feature Activities Performed describe what must be implemented
to establish a process capability. The other practices, taken as a whole, form the basis by which
an organization institutionalize the practices described in the Activities Performed common feature.
[PAULK93]

Figure 10-4. Staged Model Architecture [PAULK93]

10-13

Chapter 10: Developing Software Maturity GSAM Version 3.0

The architecture for the Continuous Model was developed by the SPICE committee. It is based
on the philosophy that improvement is a continuum, not separate distinct stages. It doesn’t
dictate the order in which organizational activities or processes should be addressed. It leaves
that up to the organization to decide which is most important to their situation. Figure 10-5 is an
example of a continuous model. The architecture has domain specific process areas with capability
levels and associated common features or generic practices that are common to all process areas.
The capability levels provide a recommended improvement path within a process area.

 Examples of domains are engineering, project and organizational domains. Examples of process
areas within the project domain are Project Planning, Project Monitoring and Control and
Coordination. Each process area is characterized by a set of base or process specific practices.

Examples of capability levels are Performed, Managed, Quantitatively Managed and Optimizing.
Each is characterized by a set of “generic” goals and practices which define a common level of
sophistication or capability for the implementation of process areas. By applying the capability
level ladder with associated generic goals and practices to a given process area, the organization
has a road map for the improvement of one segment of its business practices

Figure 10-5. Continuous Model Architecture [SEI95]

10-14

Chapter 10: Developing Software Maturity GSAM Version 3.0

10.3.2 Capability Maturity Model (CMM)

Like habitual and subconscious actions, software development processes are difficult to establish
and even more difficult to break. Improvement seldom occurs by simply defining a more efficient
process. Software engineers must understand the need to change, be convinced the new process
will, indeed, improve performance, and be supported while they learn and implement it. The
development processes for major software-intensive systems are often large and extremely
complex. Therefore, they are difficult to define, comprehend, and especially, to implement. To
aid organizations in determining the capabilities of their current process and to establish priorities
for improvement, the SEI developed the software process maturity framework, as illustrated in
Figure 10-6.

Figure 10-6. Software Process Maturity Framework

The framework provides a benchmark of sound, proven principles for quality, recognized by
both engineering and manufacturing disciplines to be effective for software. The purpose of the
model is to help organizations determine their current capabilities and identify their most critical
issues. The model characterizes the level of an organization’s maturity based on the extent to
which measurable and repeatable software engineering and management practices are
institutionalized. This method can also be used to identify areas for improvement. Software
managers usually know their problems in excruciating detail, but lack clear improvement priorities
that can be understood and agreed upon by the team. By establishing a limited set of priorities
and working aggressively to achieve them, more rapid progress can be made than with an
unfocused effort. The CMM is organized into five maturity levels:

10-15

Chapter 10: Developing Software Maturity GSAM Version 3.0

• Level 1 — Initial. The software process is characterized as ad hoc, and occasionally even
chaotic. Few processes are defined and success depends on individual effort and heroics.

• Level 2 — Repeatable. Basic program management processes are established to track cost,
schedule, and functionality. The necessary process discipline is in place to repeat earlier
successes on programs with similar applications.

• Level 3 — Defined. The software process for both management and engineering activities is
documented, standardized, and integrated into a standard software process for the organization.
All programs use an approved, tailored version of the organization’s standard software process
for developing and maintaining software.

• Level 4 — Managed. Detailed measures of the software process and product quality are
collected. Both the software process and products are quantitatively understood and controlled.

• Level 5 — Optimizing. Continuous process improvement is enabled by quantitative feedback
from the process and from piloting innovative ideas and technologies. [PAULK93]

Figure 10-7 shows the key process areas for each maturity level for the CMM for Software.

Figure 10-7. Key Process Areas and Maturity Levels for the CMM for Software
[PAULK93]

Except for Level 1, each maturity level is decomposed into several key process areas (KPAs) that
indicate the areas on which an organization should focus to improve its software process. The
KPAs at Level 2 focus on establishing basic program management controls. The KPAs at Level
3 address both program and organizational issues, as the organization establishes an infrastructure
that institutionalizes effective software engineering and management across all programs. The

10-16

Chapter 10: Developing Software Maturity GSAM Version 3.0

KPAs at Level 4 focus on establishing a quantitative understanding of software process and work
products under development. The KPAs at Level 5 cover issues that the organization and programs
must address to implement continuous and measurable process improvement. Each KPA is
described in terms of the key practices that contribute to satisfying its goals, and the infrastructure
and activities contributing most to their effective implementation and institutionalization as the
organization moves toward higher maturity levels.

10.3.3 People — Capability Maturity Model (P-CMM)

Organizations trying to improve their capability often discover a number of interrelated components
must be addressed. Three key components for improvement are: people, process, and technology,
as illustrated in Figure 10-8.

Figure 10-8. Three Key Components for Improvement [HEFLEY95]

Despite the importance of a talented staff, human resource practices are often ad hoc and
inconsistent, and managers are insufficiently trained in performing them. Consequently, software
managers often rely on their human resource departments for human resource practices
administration (such as training, professional development, mentoring). Thus, these practices
are applied with regard to how they impact performance. In many cases, even when software
organizations are aware of the problem and want to improve these practices, they do not know
where or how to begin.

The SEI’s People — Capability Maturity Model (P-CMM) provides guidance on how to improve
human resource management. The P-CMM is an adaptation of the CMM that focuses on
developing organizational talent. It can be used to radically improve an organization’s ability to
attract, develop, motivate, organize, and retain the talent needed to increase software development
maturity. The P-CMM helps software organizations to:

• Characterize people management maturity,
• Set priorities for improving the level of talent,
• Integrate talent growth with process improvement, and
• Establish a culture of software engineering excellence that attracts and retains the best and

the brightest.

10-17

Chapter 10: Developing Software Maturity GSAM Version 3.0

10.3.3.1 P-CMM Structure

The P-CMM is fashioned after the CMM in structure and format. The P-CMM will evolve to stay
synchronized with architectural changes made in the CMM and other maturity standards, such as
SPICE. It provides the same type guidance as the CMM, but in a different dimension. People
management maturity describes an organization’s ability to consistently improve the knowledge
and skills of its staff and align their performance with organizational objectives. The P-CMM
addresses a broad range of people management issues, including:

• Recruiting (attracting talent),
• Selection (choosing talent),
• Performance management (coaching talent),
• Training (enhancing talent),
• Compensation and reward (rewarding talent),
• Career development (developing talent),
• Organization and work design (organizing talent), and
• Team and culture development (integrating talent).

As illustrated in Figure 10-9, the P-CMM consists of five maturity levels. Each maturity level is
a well-defined evolutionary plateau that institutionalizes a level of capability within the
organization. Each level contains numerous KPAs designed to satisfy a set of goals set in the
context of how people management practices are defined.

Figure 10-9. P-CMM Key Process Areas by Maturity Level [HEFLEY95]

10-18

Chapter 10: Developing Software Maturity GSAM Version 3.0

For instance, the KPAs at Level 2 focus on instilling basic discipline into people management
activities. The KPAs at Level 3 address the issues of identifying primary competencies and
aligning people management activities with them. The KPAs at Level 4 focus on quantitatively
managing organizational growth in people management capabilities and in establishing
competency-based teams. The KPAs at Level 5 cover continuous improvement methods for
developing competency at the organizational and individual level. The KPAs are internally
organized by common features (i.e., those attributes indicating whether KPA implementation
and institutionalization is effective, repeatable, and lasting). The five common features are:
commitment to perform, ability to perform, activities performed, measurement and analysis, and
verifying implementation. [HEFLEY95]

10.3.4 Software Acquisition — Capability Maturity Model (SA-

CMM)

The SEI’s Software Acquisition — Capability Maturity Model (SA-CMM) was developed to
assess the government’s internal software acquisition management process maturity. It reflects a
collaborative team effort by acquisition experts from DoD, federal agencies, the SEI, and industry,
and provides a framework for benchmarking and improving the software acquisition process. Its
users are those organizations with responsibility for acquiring and supporting software-intensive
products, e.g., government Project Managers/Program Executive Officers (PMs/PEOs),
government Software Support Activities, industry PM/PEO equivalents, and senior executives.
The purpose of the SA-CMM is to:

• Support senior management goal setting (i.e., each level of maturity represents an increased
software acquisition process capability); and

• Support prediction of potential performance (includes accounting for factors significantly
contributing to process capability).

The SA-CMM is based on the premise that, as we mature and improve our capabilities, our
probability of success increases, and we are able to make better predictions. The purpose of
assessing an acquisition organization’s maturity level is to identify areas for process improvement.
To make improvements, an organization must have an ultimate goal, know what is required to
achieve that goal, and be able to measure progress towards achieving it. The SA-CMM provides
the information and guidance needed to facilitate those activities.

The SA-CMM defines KPAs for four of five maturity levels. While the SA-CMM describes the
acquirer’s role (in contrast to the CMM which focuses on the developer’s process), it includes
certain pre-contract award activities, such as software Statement of Work preparation and
documentation requirements, and source selection participation. The SA-CMM has the same
architecture as the CMM, as illustrated in Table 10-2. SA-CMM maturity levels are described as:

10-19

Chapter 10: Developing Software Maturity GSAM Version 3.0

• Level 1 — Initial. The software acquisition process is characterized as ad hoc, and occasionally
even chaotic. Few processes are defined and success depends on individual effort. For an
organization to mature beyond the initial level, it must install basic management controls to
instill self-discipline.

• Level 2 — Repeatable. Basic software acquisition project management processes are
established to plan all aspects of the acquisition, manage software requirements, track project
team and contractor performance, manage the project’s cost and schedule baselines, evaluate
the products and services, and successfully transition the software to its support organization.
The project team is basically reacting to circumstances of the acquisition as they arise. The
necessary process discipline is in place to repeat earlier successes on projects in similar
domains. For an organization to mature beyond the level of self-discipline, it must use well-
deifined processes as a foundation for improvement.

• Level 3 — Defined. The acquisition organization’s software acquisition process is documented
and standardized. All projects use an approved, tailored version of the organization’s standard
software acquisition process for acquiring their software products and services. Project and
contract management activities are proactive, attempting to anticipate and deal with acquisition
circumstances before they arise. Risk management is integrated into all aspects of the project,
and the organization provides the training required by personnel involved in the acquisition.
For an organization to mature beyond the level of defined processes, it must base decisions
on quantitative measures of its processes and products so that objectivity an be attained and
rational decisions made.

• Level 4 — Quantitative. Detailed measures of the software acquisition processes, products,
and services are collected. The software processes, products, and services are quantitatively
and qualitatively understood and controlled.

• Level 5 — Optimizing. Continuous process improvement is empowered by quantitative
feedback from the process and from piloting innovative ideas and technologies. Ultimately
an organization recognizes that continual improvement (and continual change) is necessary
to survive. [FERGUSON96]

10-20

Chapter 10: Developing Software Maturity GSAM Version 3.0

Table 10-2. Synopsis of the SA-CMM [FERGUSON96]

10.3.5 Systems Engineering — Capability Maturity Model (SE-

CMM)

The Systems Engineering — Capability Maturity Model (SE-CMM), developed by the Enterprise
Process Improvement Collaboration (EPIC), expresses essential characteristics of the basic
technical, management, and support processes for systems engineering, and provides guidance
in applying process management and institutionalization principles to the systems engineering
process. The SE-CMM architecture (Table 10-3) adopts that of the SPICE program’s Baseline
Practices Guide (BPG).

Level Focus Key Process Areas

5
Optimizing

Continuous
Process

Improvement

• Continuous Process Improvement
• Acquisition Innovation Management

4
Quantitative

Quantitative
Management

• Quantitative Process Management
• Quantitative Acquisition Management

3
Defined

Process
Standardization

• Process Definition and Maintenance
• Project Performance Management
• Contract Performance Management
• Acquisition Risk Management
• Training Program

2
Repeatable

Basic Project
Management

• Software Acquisition Planning
• Solicitation
• Requirements Development and Management
• Project Management
• Contract Tracking and Oversight
• Evaluation
• Transition to Support

1
Initial Competent People and Heroics

10-21

Chapter 10: Developing Software Maturity GSAM Version 3.0

Table 10-3. SE-CMM Architecture [SEI95]

Similar to the BPG, the SE-CMM architecture separates actual domain process characteristics
— systems engineering — from the practices related to managing those processes. It provides
generic and domain specific-guidance for process management. A base practice is defined as an
engineering or management practice that addresses the purpose of a particular process area.
Base practices are contained in 18 process areas (see Table 10-4), divided into three process area
categories: program, engineering, and organization. For example, the SE-CMM contains the
engineering process area “integrate system,” the purpose of which is to ensure all system elements
work together. One base practice in this process area is to develop detailed interface descriptions
implied by the systems architecture. Base practices provide state-of-the-practice type guidance.
Systems engineering functions are described in the base practices exhibited in the process.

Capability Level Common Features

Continually Improving • Improving organizational capability
• Improving process effectiveness

Quantitatively
Controlled

• Establishing measurable quality goals
• Objectively managing performance

Well Defined • Defining a standard process
• Perform the standard process

Planned and Tracked • Planning performance
• Disciplined performance
• Verifying performance
• Tracking performance

Performed Informally • Best practices performed

Engineering Process Areas Project Process Areas Organizational Process Areas

Analyze Candidate
Solutions

Ensure Quality Coordinate with Suppliers

Derive and Allocate
Requirements

Manage
Configurations

Define Organization’s Systems
Engineering Process

Evolve System Architecture Manage Risk Improve Organization’s Systems
Engineering Processes

Integrate Disciplines Monitor and Control
Technical Effort

Manage Product Line Evolution

Integrate System Plan Technical Effort Manage Systems Engineering
Support Environment

Understand Customer
Needs and Expectations

Provide Ongoing Knowledge and
Skills

Verify and Validate
Systems

Table 10-4. Base Practices of the SE-CMM [SEI95]

10-22

Chapter 10: Developing Software Maturity GSAM Version 3.0

Generic practices [defined above] are divided into common features [also defined above] which
are contained in process capability levels. For example, in Level 2 (Planned and Tracked), the
common feature “planning performance” contains practices to allocate adequate process
resources, assign responsibilities for product development, and provide adequate tools to support
the process. As illustrated in Figure 10-5, the advantage of the SE-CMM architecture is that
principles upon which the CMM is based are abstracted and expressed in such a way that they
can be used to assess any organization’s processes — i.e., its generic practices. On the other
hand, essential process characteristics from a particular domain are also clearly expressed — i.e.,
its base practices. This architecture, isolates both types of practices and looks at them separately.
They are then merged back together to build and design processes. In this way, enterprise domain
and process management needs are addressed and supported. [KUHN95]

10.3.6 ISO/IEC Maturity Standard: SPICE

The International Standards Organization/International Electrotechnical Commission (ISO/IEC)
is creating a set of international standards under the Software Process Improvement Capability
dEtermination (SPICE) Program. One objective of the ISO/IEC effort is to create a framework
for assessment approaches, while avoiding any specific approach to improvement, such as CMM
maturity levels. Organizations will be able to use this standard for:

• Self-assessment (to help determine an organization’s ability to implement a new software
program);

• Process improvement (to help an organization improve its own software development and
maintenance processes); and

• Capability determination (to help a purchasing organization determine the capability of a
potential software supplier).

10.3.6.1 SPICE Product Suite

The core set of SPICE products comprising the software process assessment standard include:

• ISO/IEC TR 15504-1:1998 Part 1: Concepts and introductory guide.
• ISO/IEC TR 15504-2:1998 Part 2: A reference model for processes and process capability
• ISO/IEC TR 15504-3:1998 Part 3: Performing an assessment
• ISO/IEC TR 15504-4:1998 Part 4: Guide to performing assessments
• ISO/IEC DTR 15504-5:1998 Part 5: An assessment model and indicator guidance (informative)
• ISO/IEC TR 15504-6:1998 Part 6: Guide to competency of assessors
• ISO/IEC TR 15504-7:1998 Part 7: Guide for us in process improvement
• ISO/IEC TR 15504-8:1998 Part 8: Guide for use in determining supplier process capability
• ISO/IEC TR 15504-9:1998 Part 9: Vocabulary

Field trials of SPICE-based assessments began in January 1995 and will continue until ISO/IEC
15504 is published as a full international standard, scheduled by 2001.

10-23

Chapter 10: Developing Software Maturity GSAM Version 3.0

10.3.6.2 Baseline Practices Guide

Early in the SPICE effort, a Baseline Practices Guide (BPG) was developed. The BPG defined,
at a high level, the goals and fundamental activities essential to good software engineering practices.
The BPG described what activities are required — not how to implement them. BPG practices
may be extended through Practice Guides that address a specific industry, sector, or other
requirements. [The CMM is an example of a sector-specific Practice Guide for large, software-
intensive programs and organizations.] The BPG defined five process categories:

• Customer-supplier. This category consists of processes that directly impact the customer,
support development, support transition of the software to the customer, and provide for its
correct operation and use.

• Engineering. This category consists of processes to directly specify, implement, or maintain
a system, a software product, and its user documentation.

• Program. This category consists of processes to establish the program and coordinate and
manage its resources to produce customer satisfactory products or services.

• Support. This category consists of processes enabling and supporting performance of other
program processes.

• Organization. This category consists of processes establishing organizational business goals
and developing process, product, and resource assets to achieve business goals.

Each process in the BPG can be described in terms of base practices unique to software engineering
or management activities. Process categories, processes, and base practices provide a grouping
by type of activity. These processes and activities characterize performance of a process, even if
it is not systematic. Performance of base practices may be ad hoc, unpredictable, inconsistent,
poorly planned, and/or result in poor quality products, but those work products are, at least
marginally, usable in achieving process purpose. Implementing only process base practices of a
process may be of minimal value and represent only the first step in building a process capability.
However, the base practices represent unique, functional process activities when implemented
in a particular environment.

10.3.6.3 BPG Capability Levels

The BPG expressed evolving process maturity in terms of capability levels, common features,
and generic practices. A capability level is a set of common features (sets of activities) that,
when applied together, increase a developer’s ability to perform a process. Each level represents
a major process capability improvement and process performance growth. They constitute a
rational way for practice progression and harmonize different software process rating approaches
(i.e., the CMM). Capability levels provide two benefits: (1) they acknowledge dependencies
among process practices; and (2) they help identify which improvements might be performed
first, based on a plausible process implementation sequence. The BPG lists six capability levels:

• Level 0 — Not performed. This level has no common features and there is a general failure
to perform base practices. There are no easily-identifiable process work products or outputs.

• Level 1 — Performed informally. Base practices are generally performed and process work
products testify to performance.

10-24

Chapter 10: Developing Software Maturity GSAM Version 3.0

• Level 2 — Planned and tracked. Process base practice performance is planned, tracked,
and verified. Work products conform to specified standards and requirements. The primary
distinction from the previous level is that process performance is planned, managed, and
progressing towards being well-defined.

• Level 3 — Well-defined. Base practices are performed according to a well-defined process
using approved, tailored versions of standard, documented processes. The primary distinction
from the previous level is that the process is planned, managed, and standardized throughout
the organization.

• Level 4 — Quantitatively controlled. Detailed measures of performance are collected and
analyzed. This leads to a quantitative understanding of process capability and an improved
ability to predict and manage performance. The quality of work products is quantitatively
known. The primary distinction from the previous level is that the defined process is
quantitatively understood and controlled.

• Level 5 — Continuously improving. Quantitative process effectiveness and performance
efficiency goals (targets) are established based on organizational business goals. Continuous
process improvement against these goals is enabled by quantitative feedback from defined
process performance and the piloting of innovative ideas and technologies. The primary
distinction from the previous level is that the defined, standardized process undergoes
continuous refinement and improvement based on a quantitative understanding of the impact
of process changes.

10.3.7 Common Features and Generic Practices

A common feature in the BPG is a set of practices (called generic practices) that address the
aspects of process implementation and institutionalization. The words “common” and “generic”
convey the idea that these features and practices are applicable to any process, with the goal of
enhancing the capability to perform that process. For example, “planning” is a feature common
to improved management of any process. Table 10-5 lists BPG common features and generic
practices by capability level.

10-25

Chapter 10: Developing Software Maturity GSAM Version 3.0

Table 10-5. BPG Capability Levels, Common Features, and Generic Practices
[KONRAD95]

BPG capability levels and CMM maturity levels are similar, yet distinctly different. BPG capability
levels are applied on a per process basis, while CMM organizational maturity levels are a set of
process profiles. Also, the BPG architecture does not prescribe any specific organizational
improvement path. Improvement priorities are left completely up to the software organization,
as determined by its business objectives. Individual processes, at either organization or program
level, can be measured and rated using the BPG continuous improvement architecture.
[KONRAD95]

CAPABILITY
LEVEL

COMMON FEATURE GENERIC PRACTICE

LEVEL 5
Continuously

Improving

Improving Organizational
Capability

• Establish process effectiveness goals
• Continuously improve the standard

process

Improving Process
Effectiveness

• Perform casual analysis
• Eliminate defect causes
• Continuously improve the defined

process

LEVEL 4
Quantitatively

Controlled

Establishing Measurable
Quality Goals

• Establish quality goals

Objectively Managing
Performance

• Determine process capability
• Use process capability

LEVEL 3
Well-Defined

Defining a Standard Process • Standardize the process
• Tailor the standard process

Performing the Defined
Process

• Use a well-defined process
• Perform peer reviews
• Use well-defined data

LEVEL 2
Planned

and
Tracked

Planning Performance • Allocate resources
• Assign responsibilities
• Document the process
• Provide tools
• Ensure training
• Plan the process

Disciplined Performance • Use plans, standards, and procedures
• Do configuration management

Verifying Performance • Verify process compliance
• Audit work products

Tracking Performance • Track with measurement
• Take correcitve action

LEVEL 1
Performed
Informally

Performing Base Practices • Perform the process

10-26

Chapter 10: Developing Software Maturity GSAM Version 3.0

10.4 Lessons Learned in Implementing the
Software Development CMM

The Software Engineering Division of the Technology and Industrial Support Directorate at Hill
AFB, UT was assessed at CMM Level 5 in July 1998. Patrick W. Cosgriff, a member of their
Software Engineering Process Group (SEPG), offers the following as lessons learned
[COSGRIFF991], [COSGRIFF992]:

• Understand the practices one level above the implementation level. Give some thought to
how the practices interrelate and build off each other. This may save some rework in the long
run.

• Enforcement and implementation are basically the same thing, especially in large organizations.
Or perhaps a softer way to state this would be that enforcement is the most effective
implementation strategy. For my money, objective audits done by capable, well trained people,
with a clear set of audit requirements is the most effective enforcement/implementation strategy.

• If you are a large diverse organization you may want to coordinate the developing of project
processes with the development of your organizational processes right from the start. Again,
this may reduce rework associated with fundamental style and design differences between
different product lines.

• Emphasize performance of project planning activities, not creation of documents that gather
dust.

• Don’t ignore intergroup coordination. It is kind of hard to get your hands on but it is very
important. Think of it as a characteristic you want integrated into all your activities, not a
discrete set of activities unto themselves.

• Consider the data requirements of the Software Quality Management KPA when implementing
peer reviews. It is not that difficult to gather the extra data needed to support Software
Quality Management and Defect Prevention. Having historical data on defects will give you
a big jump on implementing these higher maturity practices.

• Level four and five KPAs can be implemented together, in fact defect prevention is the logical
extension of software quality management, and Process Change Management is the logical
extension of Quantitative Process Management.

• Don’t limit your solutions to the activities and sub-practices listed in the CMM.
• Package plans, processes, and procedures in a usable way.
• Make the CMM fit your organization, not the other way around.
• Integrate common activities from different KPAs as much as possible.
• Data complements common sense, it doesn’t replace it.

10.5 Software Development Capability Assessment
Methods

Now that software acquisition and development capability maturity have been defined and the
relationship of capability maturity to processes has been explained, how is this information to be
used in improving the acquisition and development of software intensive systems? Until recently,
this information has been applied exclusively to software development organizations. If applied

10-27

Chapter 10: Developing Software Maturity GSAM Version 3.0

by an acquisition organization, it was usually in the form of a Software Development Capability
Evaluation or Software Capability Evaluation. If applied by a development organization for
internal process improvement, it was usually applied as a CMM Based Appraisal for Internal
Process Improvement, SPICE audit, or ISO 9001 audit.

Software development capability assessments are an effective method for determining the maturity
of an organization’s process. They provide a performance rating system that was established to
be fair, accurate, and enforce uniform procedures, clear definitions, consistent measurements,
and reliable information to keep vendors from challenging negative ratings. These assessments
involve visits to bidders’ facilities to determine their readiness to perform on a contract and their
software development maturity. They are used to ascertain whether the developer has a mature
software process in place that is predictable, repeatable, and manageable in terms of cost and
schedule. The purpose of these assessments is risk mitigation. They are used to determine what
risks are associated with contracting a given organization to perform your development task. An
award to a contractor with a mature, well-defined, standardized process can translate into
substantially lower program risk and cost savings for the Government through reduced
documentation, oversight, review, and auditing requirements.

REMEMBER: In addition to having a mature software development process, the
developer should also have experience in the application domain being developed.
Although a developer might have a high-level process maturity, the lack of domain
expertise could have a drastic impact on product development (i.e., performance, cost
and schedule). You need both process maturity and domain expertise to minimize software
development risk. This chapter addresses development maturity, and assumes the software
developer has the necessary domain experience.

Two software development capability assessment methods are available for source selection
evaluations. The Air Force Materiel Command’s Aeronautical Systems Center Software
Development Capability Evaluation (SDCE) is best used for developers of weapon systems with
embedded software or any application requiring substantial systems engineering. The SEI Software
Capability Evaluation (SCE) is appropriate for management information systems (MIS) developers,
and has been used for command, control, communications, computers and intelligence (C4I)
developers. However, with the substantial systems engineering required by C4I programs, you
should consider performing a SDCE to ensure the developer has a mature systems engineering
capability. The objective of these methods is to provide structured, consistent, and comprehensive
approaches for evaluating the software process. A high rating on the review does not guarantee
software development success, but the evaluation does isolate areas needing closer consideration
during source selection (and if selected, after contract award).

NOTE: For questions about command, control, and communications (C3) and ground
electronics systems acquisitions capability assessments, contact Electronic Systems Center
[see Volume 2, Appendix A]. For MIS acquisitions contact the Standard Systems Group
(SSG) [see Volume 2, Appendix A]. For avionics and embedded systems contact
Aeronautical Systems Center. Air Force in-house software development organizations
with questions on Software Process Improvement and Software Maturity Assessments
should contact the Software Technology Support Center.

10-28

Chapter 10: Developing Software Maturity GSAM Version 3.0

Once your program is assessed, it is of little or no use if you are not committed to improvement.
No matter how often the assessment is performed, it is only a starting point. Each time an
assessment is performed, it identifies your current level of capability — but more importantly —
it identifies a point from which to begin your next round of improvement. Those few organizations
who have achieved a CMM Level 3 or above claim they got there, and stay there, because they
have an organization-wide quality attitude. Always looking for ways to improve, they develop
an extensive set of measures that they perpetually re-evaluate.

10.5.1 Software Development Capability Evaluation (SDCE)

The SDCE evaluates a contractor’s ability to develop software for a specific weapon system
program, as defined in the RFP. It also helps to decide whether the contractor has the capacity
and sufficient qualified personnel available to complete the proposed software development.
Assessing capability during source selection accomplishes three related objectives:

• The offeror’s capability and capacity to develop the required software within the program
baseline is determined;

• The review process elicits a contractual commitment by the offeror, if selected, to implement
the methods, tools, practices, and procedures making up their software development process;
and

• Insight is gained into each offeror’s systems and software engineering development methods
and tools to be applied to your program.

The SDCE concentrates on five areas: management approach, management tools, development
practices, personnel resources, and programming language technology. The review is normally
performed during the Engineering and Manufacturing Development (EMD) request for proposal
(RFP) preparation and source selection acquisition phase. However, when software developed
during Demonstration/Validation (Dem/Val) is planned to be carried through to EMD, an SDCE
should be performed during the Dem/Val source selection phase. Your RFP must state that
offerors provide specific information describing their software development methods, including
examples of how their methods have been applied on past or on-going programs. If an open
discussion is conducted, an in-plant review of the offeror’s team is performed by the Government.
The evaluation can also be based solely on the material submitted with the proposal, with the in-
plant portion of the SDCE conducted after contract award. [Aeronautical Systems Center policy
requires the use of SDCE results in all weapons systems software source selections.]

10.5.2 Software Engineering Institute (SEI) Software Capability

Evaluation (SCE)

The SCE is described in SCE Version 3.0 Method Description (CMU/SEI-96-TR-002, April
1996) and the SCE Verion 3.0 Implementation Guide for Supplier Selection, (CMU/SEI-95-TR-
012, April 1996) by the SEI.

SCE is a method for evaluating the software process of an organization to gain insight into its
software development capability. This insight can be a valuable input to process improvement
activities. Hence, the SCE Method helps evaluate the software process capability of a software

10-29

Chapter 10: Developing Software Maturity GSAM Version 3.0

development organization (an organization that develops and/or maintains software products).
Software process capability refers to the range of expected results that can be achieved by following
a process. The processes evaluated by SCE include decision-making processes (such as project
planning), communication processes (such as intergroup communication), and technical support
processes (such as peer reviews and product engineering)—but not technical production processes
(i.e. processes required by a particular methodology, such as object oriented design). The SCE
Method does not evaluate technical production processes such as requirements analysis,
specification, and design, but instead focuses on the management of the technical production
processes and on other key processes. [BARBOUR95]

A WORD OF CAUTION! An SCE investigates areas generally limited to the processes
used. For example, this includes the process of selecting appropriate tools and methods,
and training personnel to use them. However, an SCE does not evaluate whether the
processes themselves are effective or efficient, nor does it address the appropriateness of
the tools and methods used by the developer. Therefore, a proposal by a mature software
development organization to use new, state-of-the-art tools and methods could be a
significant risk if the developer does not have an experience base to handle them.
[HOROWITZ95]

SEI transition partners train source selection teams on conducting Software Capability Evaluations
(SCEs). SEI instructor personnel do not lead or formally participate in SCEs. However, they
may observe SCE teams while they conduct evaluations on site. These observation trips, lessons-
learned reports, and experiences have been major contributors to the SCE method’s evolution
into its current form. [BARBOUR93]

NOTE: ESC can provide SCE evaluation teams upon request for Air Force procurements.
Contact ESC for more information [see Volume 2, Appendix A]. For more information on
the SEI Transition Partners, contact the SEI [see Volume 2, Appendix A].

10.5.3 Addressing Maturity in the Request for Proposal (RFP)

To ensure the software process enacted for your program is predictable, repeatable, and manageable
in terms of quality, cost, schedule, and performance, you should evaluate the offeror’s software
development capabilities prior to (or during) source selection. Remember, you are buying the
process as well as the product! Performing a software development capability assessment will
help you identify risks associated with the offeror’s approach. Risk identification is possible,
since you will have:

1. An understanding of how the organization managed software development efforts in the
past; and

2. The opportunity to compare past performance with the proposed software development
process.

Therefore, you must pay due attention to the offeror’s software development processes, starting
with overall assessments like the SCE or SDCE, which focus on the details of tools, metrics,
personnel facilities, management control, and language experience. Based on the maturity level
of the selected contractor, you should consider customizing your contract to adapt that offeror’s

10-30

Chapter 10: Developing Software Maturity GSAM Version 3.0

strengths and weaknesses. For example, if the contractor has achieved a high level of maturity (3
or above), you may decide that online access to the contractor’s development environment and
management status reports (e.g., cost, schedule, risk management and metrics data) is an effective
alternative to the traditional oversight mechanisms of formal reviews and submission/approval
of data items. Alternatively, if an offeror’s process for coordinating the efforts of different
engineering disciplines and stake holders is relatively weak, you may add a requirement for an
on-site liaison to support coordination with users and the contractors developing interfacing
systems.

10-31

Chapter 10: Developing Software Maturity GSAM Version 3.0

10.6 References

[BARBOUR93] Barbour, Rick, Software Capability Evaluation Version 1.0 Implementation Guide, CMU/
SEI-93-TR-18, Software Engineering Institute, Carnegie Mellon University, Pittsburgh PA, 1993

[BARBOUR95] Barbour, Rick, Software Capability Evaluation Version 3.0 Implementation Guide for
Supplier Selection, CMU/SEI-95-TR-12, Software Engineering Institute, Carnegie Mellon University,
Pittsburgh PA, 1995

[CLOUGH92] Clough, Anne J., “Software Process Technology,” CrossTalk, June/July 1992
[COSGRIFF991] Cosgriff, Patrick W., “The Journey to CMM Level 5: How Long Does It Take?”, draft

article submitted to CrossTalk, March 1999
[COSGRIFF992] Cosgriff, Patrick W., and David Haakenson, “The Right Things for the Right Reasons,”

briefing given to USPIN, 1999
[DELAVIGNE94] Delevagne, Kenneth T. and J. Daniel Robertson, Deming’s Profound Changes, PTR

Prentice Hall, Englewood Cliffs, New Jersey, 1994
[DSMC90] Defense Systems Management College, Systems Engineering Management Guide, US

Government Printing Office, Washington, RUN-TIME, 1990
 [FERGUSON96] Ferguson, Jack R., et al, “Software Acquisition Capability Maturity Model (SA-CMM)

Version 1.01, CMU/SEI-96-TR-020, Software Engineering Institute, Carnegie Mellon University,
Pittsburgh PA, December 1996

[GUINAN97] Guinan, P. J., J. G. Cooprider, and S. Sawyer, “The Effective Use of Automated Applicatioin
Development Tools,” IBM Systems Journal, Vol 36, No. 1, 1997

[HAMMER96] Hammer, Michael, Beyond Reengineering, HarperCollins, New York, New York, 1996
[HEFLEY95] Hefley, William E., et al., “People Capability Maturity Model (P-CMM) Incorporating

Human Resources into Process Improvement Programs,” Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, Pennsylvania, 1995

[HOROWITZ95] Horowitz, Barry M., personal communication to Lloyd K. Mosemann, II, December
1995

[HUMPHREY95] Humphrey, Watts S., A Discipline for Software Engineering, Addison-Wesley Publishing
Company, Reading, Massachusetts, 1995

[KONRAD95] Konrad, Michael D., and Mark C. Paulk, “An Overview of SPICE’s Model for Process
Management,” Software Engineering Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania,
1995

[KUHN95] Kuhn, Dorothy A., and Suzanne M. Garcia, “Developing a Capability Maturity Model for
Systems Engineering,” Software Engineering Institute, Carnegie Mellon University, Pittsburgh,
Pennsylvania, 1995

[PAULK93] Paulk, Mark C., Bill Curtis, Mary Beth Chrissis, Charles V. Weber, Capability Maturity
Model for Software, Version 1.1 (CMU/SEI-93-TR-24), Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, Pennsylvania, 1003

[SAIEDIAN95] Saiedian, Hussein, and Richard Kitzara, “SEI Capability Maturity Model’s Impact on
Contractors,” IEEE, January 1995

[SEI94] Benefits of CMM-Based Software Process Improvement: Initial Results (CMU/SEI-94-TR-13),
Software Engineering Institute, Carnegie-Mellon University, August 1994

[SEI95] A Systems Engineering Capability Maturity Model, Version 1.1 (CMU/SEI 95-MM-003), Software
Engineering Institute, Carnegie-Mellon University, November 1995

[VU97] Vu, John D., Presentation at 1997 National SEPG Conference
[WILLIAMS97] Williams, Karl, “The Value of Software Improvement,” SPIRE97, 1997

	Chapter 10 Developing Software Maturity
	Contents

